Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoQTRSProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

f(TRUE, x, y, z) → f(>@z(x, +@z(y, z)), x, +@z(y, 1@z), z)
f(TRUE, x, y, z) → f(>@z(x, +@z(y, z)), x, y, +@z(z, 1@z))

The set Q consists of the following terms:

f(TRUE, x0, x1, x2)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoQTRSProof
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))


Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → GREATER_INT(x, plus_int(y, z))
F(true, x, y, z) → PLUS_INT(y, z)
F(true, x, y, z) → PLUS_INT(pos(s(0)), y)
F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → PLUS_INT(pos(s(0)), z)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, x, y, z) → GREATER_INT(x, plus_int(y, z))
F(true, x, y, z) → PLUS_INT(y, z)
F(true, x, y, z) → PLUS_INT(pos(s(0)), y)
F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → PLUS_INT(pos(s(0)), z)
GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
PLUS_INT(pos(x), neg(y)) → MINUS_NAT(x, y)
PLUS_INT(neg(x), pos(y)) → MINUS_NAT(y, x)
PLUS_INT(neg(x), neg(y)) → PLUS_NAT(x, y)
PLUS_INT(pos(x), pos(y)) → PLUS_NAT(x, y)
PLUS_NAT(s(x), y) → PLUS_NAT(x, y)
MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 8 less nodes.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS_NAT(s(x), s(y)) → MINUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS_NAT(s(x), y) → PLUS_NAT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(neg(s(x)), neg(s(y))) → GREATER_INT(neg(x), neg(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(neg(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

GREATER_INT(pos(s(x)), pos(s(y))) → GREATER_INT(pos(x), pos(y))
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(GREATER_INT(x1, x2)) = 2·x1 + x2   
POL(pos(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)

The TRS R consists of the following rules:

f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
f(true, x, y, z) → f(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

f(true, x0, x1, x2)
greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

f(true, x0, x1, x2)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
Positions in right side of the pair: Pair: F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z, x_removed) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(x_removed, z), x_removed)
F(true, x, y, z, x_removed) → F(greater_int(x, plus_int(y, z)), x, plus_int(x_removed, y), z, x_removed)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z))
Positions in right side of the pair: Pair: F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z, x_removed) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(x_removed, z), x_removed)
F(true, x, y, z, x_removed) → F(greater_int(x, plus_int(y, z)), x, plus_int(x_removed, y), z, x_removed)

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, y, plus_int(pos(s(0)), z)) at position [0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), plus_int(pos(s(0)), pos(x1)))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), plus_int(pos(s(0)), pos(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), plus_int(pos(s(0)), pos(x1)))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), plus_int(pos(s(0)), pos(x1)))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), plus_int(pos(s(0)), pos(x1))) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(plus_nat(s(0), x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), plus_int(pos(s(0)), pos(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(plus_nat(s(0), x1)))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), plus_int(pos(s(0)), neg(x1))) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), plus_int(pos(s(0)), neg(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), plus_int(pos(s(0)), pos(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(plus_nat(s(0), x1)))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), plus_int(pos(s(0)), neg(x1))) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), plus_int(pos(s(0)), pos(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(plus_nat(s(0), x1)))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), plus_int(pos(s(0)), pos(x1))) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(plus_nat(s(0), x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(plus_nat(s(0), x1)))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(plus_nat(s(0), x1)))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(plus_nat(s(0), x1))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(plus_nat(0, x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(plus_nat(s(0), x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(plus_nat(0, x1))))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(plus_nat(s(0), x1))) at position [3,0] we obtained the following new rules [LPAR04]:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(plus_nat(0, x1))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
QDP
                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(plus_nat(0, x1))))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(plus_nat(0, x1))))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(plus_nat(0, x1)))) at position [3,0,0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
QDP
                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(plus_nat(0, x1))))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(plus_nat(0, x1)))) at position [3,0,0] we obtained the following new rules [LPAR04]:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z)
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, x, y, z) → F(greater_int(x, plus_int(y, z)), x, plus_int(pos(s(0)), y), z) at position [0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), pos(x0)), pos(x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), neg(x0)), neg(x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
QDP
                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), pos(x0)), pos(x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), neg(x0)), neg(x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
QDP
                                                                      ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), pos(x0)), pos(x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
QDP
                                                                          ↳ Rewriting
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), pos(x0)), pos(x1))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), pos(x0)), pos(x1)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(plus_nat(s(0), x0)), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
QDP
                                                                              ↳ DependencyGraphProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(plus_nat(s(0), x0)), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
QDP
                                                                                    ↳ UsableRulesProof
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(plus_nat(s(0), x0)), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
QDP
                                                                                        ↳ QReductionProof
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(plus_nat(s(0), x0)), pos(x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
QDP
                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(plus_nat(s(0), x0)), pos(x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(plus_nat(s(0), x0)), pos(x1)) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(plus_nat(0, x0))), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
QDP
                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(plus_nat(0, x0))), pos(x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(plus_nat(0, x0))), pos(x1)) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(x0)), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
QDP
                                                                                                    ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1)))
F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(x0)), pos(x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(x0), pos(s(x1))) we obtained the following new rules [LPAR04]:

F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(z1)), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
QDP
                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(x0)), pos(x1))
F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(z1)), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(z1)), pos(s(z2))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
QDP
                                                                                                            ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(x0)), pos(x1))
F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, y0, pos(x0), pos(x1)) → F(greater_int(y0, pos(plus_nat(x0, x1))), y0, pos(s(x0)), pos(x1)) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(s(z1))), pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
QDP
                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(s(z1))), pos(z2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(s(z1))), pos(s(z2))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
QDP
                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(plus_nat(s(z1), z2))), z0, pos(s(s(z1))), pos(z2)) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
QDP
                                                                                                                        ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, z0, pos(z1), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(z1, s(z2)))), z0, pos(z1), pos(s(s(z2)))) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(z2)))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
QDP
                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(z2)))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(z1)), pos(s(s(s(z2))))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(z2)))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(z1), s(z2)))), z0, pos(s(z1)), pos(s(s(z2)))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(z2)))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(z2)))), z0, pos(s(s(z1))), pos(s(s(z2)))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                            ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(z1)), pos(s(z2))) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
QDP
                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(z1))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(z1))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(z1))), pos(s(z2))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                            ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(s(z1)), pos(s(s(z2)))) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(x2))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
QDP
                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(x2))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(x2))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(x2))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(s(z2))))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(x2))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(plus_nat(s(s(z1)), s(s(x2))))), z0, pos(s(s(s(z1)))), pos(s(s(x2)))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(x2)))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(x2)))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(s(z1), s(s(z2))))), z0, pos(s(s(z1))), pos(s(s(z2)))) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(x2)))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(x2)))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(x2)))))), z0, pos(s(s(s(z1)))), pos(s(s(x2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(s(z1))), pos(s(z2))) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(s(x1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2))
F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, z0, pos(s(z1)), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(z1, z2)))), z0, pos(s(s(z1))), pos(z2)) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(s(x1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2)))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(z2)))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2)))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(s(z1)), s(z2))))), z0, pos(s(s(s(s(z1))))), pos(s(z2))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(s(s(z2))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(s(s(s(z1))), s(s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2))))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(plus_nat(s(z1), z2)))), z0, pos(s(s(s(z1)))), pos(z2)) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(s(z1), s(z2))))), z0, pos(s(s(s(z1)))), pos(s(z2))) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2)))))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(z2))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2)))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(s(z1), s(z2)))))), z0, pos(s(s(s(s(z1))))), pos(s(z2))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                                ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(s(s(z1)), s(s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2))))) at position [0,1,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                                    ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(z2)))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2)))) at position [0,1,0,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(s(plus_nat(z1, s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                                        ↳ Rewriting
QDP
                                                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(s(plus_nat(z1, s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(s(z1), s(s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2))))) at position [0,1,0,0,0,0] we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(s(plus_nat(z1, s(s(s(z2)))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ Rewriting
                                                                                                  ↳ QDP
                                                                                                    ↳ Instantiation
                                                                                                      ↳ QDP
                                                                                                        ↳ Rewriting
                                                                                                          ↳ QDP
                                                                                                            ↳ Instantiation
                                                                                                              ↳ QDP
                                                                                                                ↳ Rewriting
                                                                                                                  ↳ QDP
                                                                                                                    ↳ Rewriting
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Instantiation
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Rewriting
                                                                                                                              ↳ QDP
                                                                                                                                ↳ Rewriting
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Rewriting
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Rewriting
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ Instantiation
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ Rewriting
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
                                                                                                                                                      ↳ QDP
                                                                                                                                                        ↳ Rewriting
                                                                                                                                                          ↳ QDP
                                                                                                                                                            ↳ Instantiation
                                                                                                                                                              ↳ QDP
                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                  ↳ QDP
                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                      ↳ QDP
                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                          ↳ QDP
                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                            ↳ Instantiation
                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                ↳ Instantiation
                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                                            ↳ Rewriting
                                                                                                                                                                                                                                                                                              ↳ QDP
                                                                                                                                                                                                                                                                                                ↳ Rewriting
                                                                                                                                                                                                                                                                                                  ↳ QDP
                                                                                                                                                                                                                                                                                                    ↳ Rewriting
                                                                                                                                                                                                                                                                                                      ↳ QDP
                                                                                                                                                                                                                                                                                                        ↳ Rewriting
                                                                                                                                                                                                                                                                                                          ↳ QDP
                                                                                                                                                                                                                                                                                                            ↳ Rewriting
QDP
                                                                                  ↳ QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(z1), pos(s(s(z2)))) → F(greater_int(z0, pos(plus_nat(z1, s(s(z2))))), z0, pos(z1), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(z2))) → F(greater_int(z0, pos(s(plus_nat(z1, s(z2))))), z0, pos(s(z1)), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(x1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(x1, s(s(s(z2))))))), z0, pos(s(x1)), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(z1))), pos(s(z2)))
F(true, z0, pos(z1), pos(s(s(s(z2))))) → F(greater_int(z0, pos(plus_nat(z1, s(s(s(z2)))))), z0, pos(s(z1)), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(s(z2)))))))), z0, pos(s(s(z1))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(z1)), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(s(z2))))))), z0, pos(s(s(z1))), pos(s(s(s(z2)))))
F(true, z0, pos(s(z1)), pos(s(s(z2)))) → F(greater_int(z0, pos(s(plus_nat(z1, s(s(z2)))))), z0, pos(s(s(z1))), pos(s(s(z2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(z2)))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(s(s(x2)))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(x2))))))), z0, pos(s(s(s(z1)))), pos(s(s(x2))))
F(true, z0, pos(s(s(z1))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(s(s(s(z2))))))))), z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(z1))), pos(s(z2))) → F(greater_int(z0, pos(s(s(plus_nat(z1, s(z2)))))), z0, pos(s(s(s(z1)))), pos(s(z2)))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(z2)))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(z2))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2)))))
F(true, z0, pos(s(s(z1))), pos(z2)) → F(greater_int(z0, pos(s(s(plus_nat(z1, z2))))), z0, pos(s(s(s(z1)))), pos(z2))
F(true, z0, pos(s(s(s(z1)))), pos(s(s(s(s(z2)))))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(s(s(s(z2)))))))))), z0, pos(s(s(s(s(z1))))), pos(s(s(s(s(z2))))))
F(true, z0, pos(s(s(s(z1)))), pos(s(z2))) → F(greater_int(z0, pos(s(s(s(plus_nat(z1, s(z2))))))), z0, pos(s(s(s(s(z1))))), pos(s(z2)))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(z2)))) → F(greater_int(z0, pos(s(s(s(s(plus_nat(z1, s(s(z2))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(z2))))
F(true, z0, pos(s(s(s(s(z1))))), pos(s(s(s(z2))))) → F(greater_int(z0, pos(s(s(s(s(plus_nat(z1, s(s(s(z2)))))))))), z0, pos(s(s(s(s(s(z1)))))), pos(s(s(s(z2)))))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
QDP
                                                                                    ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
QDP
                                                                                        ↳ QReductionProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
QDP
                                                                                            ↳ Rewriting
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, plus_int(pos(s(0)), neg(x0)), pos(x1)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, minus_nat(s(0), x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
QDP
                                                                                                ↳ UsableRulesProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, minus_nat(s(0), x0), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
QDP
                                                                                                    ↳ QReductionProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, minus_nat(s(0), x0), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
QDP
                                                                                                        ↳ Narrowing
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, minus_nat(s(0), x0), pos(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, minus_nat(s(0), x0), pos(x1)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, neg(0), pos(y2)) → F(greater_int(y0, minus_nat(y2, 0)), y0, pos(s(0)), pos(y2))
F(true, y0, neg(s(x1)), pos(y2)) → F(greater_int(y0, minus_nat(y2, s(x1))), y0, minus_nat(0, x1), pos(y2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
QDP
                                                                                                            ↳ DependencyGraphProof
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(0), pos(y2)) → F(greater_int(y0, minus_nat(y2, 0)), y0, pos(s(0)), pos(y2))
F(true, y0, neg(s(x1)), pos(y2)) → F(greater_int(y0, minus_nat(y2, s(x1))), y0, minus_nat(0, x1), pos(y2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ AND
                                                                                  ↳ QDP
                                                                                  ↳ QDP
                                                                                    ↳ UsableRulesProof
                                                                                      ↳ QDP
                                                                                        ↳ QReductionProof
                                                                                          ↳ QDP
                                                                                            ↳ Rewriting
                                                                                              ↳ QDP
                                                                                                ↳ UsableRulesProof
                                                                                                  ↳ QDP
                                                                                                    ↳ QReductionProof
                                                                                                      ↳ QDP
                                                                                                        ↳ Narrowing
                                                                                                          ↳ QDP
                                                                                                            ↳ DependencyGraphProof
QDP
                                                                    ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), pos(x1)) → F(greater_int(y0, minus_nat(x1, x0)), y0, neg(x0), pos(s(x1)))
F(true, y0, neg(s(x1)), pos(y2)) → F(greater_int(y0, minus_nat(y2, s(x1))), y0, minus_nat(0, x1), pos(y2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
QDP
                                                                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), neg(x0)), neg(x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1))

The TRS R consists of the following rules:

plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
QDP
                                                                          ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), neg(x0)), neg(x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, plus_int(pos(s(0)), neg(x0)), neg(x1)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
QDP
                                                                              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
QDP
                                                                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, plus_int(pos(s(0)), pos(x0)), neg(x1)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(plus_nat(s(0), x0)), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
QDP
                                                                                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(plus_nat(s(0), x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
QDP
                                                                                            ↳ UsableRulesProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(plus_nat(s(0), x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
QDP
                                                                                                ↳ QReductionProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(plus_nat(s(0), x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
QDP
                                                                                                    ↳ Rewriting
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(plus_nat(s(0), x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(plus_nat(s(0), x0)), neg(x1)) at position [2,0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(plus_nat(0, x0))), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
QDP
                                                                                                        ↳ UsableRulesProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(plus_nat(0, x0))), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
QDP
                                                                                                            ↳ Rewriting
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(plus_nat(0, x0))), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(plus_nat(0, x0))), neg(x1)) at position [2,0,0] we obtained the following new rules [LPAR04]:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
QDP
                                                                                                                ↳ UsableRulesProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
QDP
                                                                                                                    ↳ QReductionProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_nat(0, x0)
plus_nat(s(x0), x1)



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
QDP
                                                                                                                        ↳ Narrowing
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1))
F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(x0), minus_nat(s(0), x1)) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, pos(y1), neg(0)) → F(greater_int(y0, minus_nat(y1, 0)), y0, pos(y1), pos(s(0)))
F(true, y0, pos(y1), neg(s(x1))) → F(greater_int(y0, minus_nat(y1, s(x1))), y0, pos(y1), minus_nat(0, x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))
F(true, y0, pos(y1), neg(0)) → F(greater_int(y0, minus_nat(y1, 0)), y0, pos(y1), pos(s(0)))
F(true, y0, pos(y1), neg(s(x1))) → F(greater_int(y0, minus_nat(y1, s(x1))), y0, pos(y1), minus_nat(0, x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
QDP
                                                                                                                                ↳ QDPOrderProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))
F(true, y0, pos(y1), neg(s(x1))) → F(greater_int(y0, minus_nat(y1, s(x1))), y0, pos(y1), minus_nat(0, x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(true, y0, pos(y1), neg(s(x1))) → F(greater_int(y0, minus_nat(y1, s(x1))), y0, pos(y1), minus_nat(0, x1))
The remaining pairs can at least be oriented weakly.

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(F(x1, x2, x3, x4)) = x4   
POL(false) = 0   
POL(greater_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = x2   
POL(neg(x1)) = x1   
POL(pos(x1)) = 0   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ QDPOrderProof
QDP
                                                                                                                                    ↳ Instantiation
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, y0, pos(x0), neg(x1)) → F(greater_int(y0, minus_nat(x0, x1)), y0, pos(s(x0)), neg(x1)) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(z1)), neg(z2)) → F(greater_int(z0, minus_nat(s(z1), z2)), z0, pos(s(s(z1))), neg(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ QDPOrderProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Instantiation
QDP
                                                                                                                                        ↳ Instantiation
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(z1)), neg(z2)) → F(greater_int(z0, minus_nat(s(z1), z2)), z0, pos(s(s(z1))), neg(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule F(true, z0, pos(s(z1)), neg(z2)) → F(greater_int(z0, minus_nat(s(z1), z2)), z0, pos(s(s(z1))), neg(z2)) we obtained the following new rules [LPAR04]:

F(true, z0, pos(s(s(z1))), neg(z2)) → F(greater_int(z0, minus_nat(s(s(z1)), z2)), z0, pos(s(s(s(z1)))), neg(z2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ QDPOrderProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Instantiation
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
QDP
                                                                                                                                            ↳ MNOCProof
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(s(z1))), neg(z2)) → F(greater_int(z0, minus_nat(s(s(z1)), z2)), z0, pos(s(s(s(z1)))), neg(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Rewriting
                                                                                                      ↳ QDP
                                                                                                        ↳ UsableRulesProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Rewriting
                                                                                                              ↳ QDP
                                                                                                                ↳ UsableRulesProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ QReductionProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Narrowing
                                                                                                                          ↳ QDP
                                                                                                                            ↳ DependencyGraphProof
                                                                                                                              ↳ QDP
                                                                                                                                ↳ QDPOrderProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Instantiation
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ Instantiation
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ MNOCProof
QDP
                                                                                          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, pos(s(s(z1))), neg(z2)) → F(greater_int(z0, minus_nat(s(s(z1)), z2)), z0, pos(s(s(s(z1)))), neg(z2))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
QDP
                                                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))

The TRS R consists of the following rules:

minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
greater_int(pos(0), pos(0)) → false
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), pos(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), pos(s(y))) → false
greater_int(neg(0), pos(s(y))) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), pos(0)) → true
greater_int(neg(s(x)), pos(0)) → false
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
QDP
                                                                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
QDP
                                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1))
F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, neg(x0), minus_nat(s(0), x1)) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))
F(true, y0, neg(y1), neg(0)) → F(greater_int(y0, neg(plus_nat(y1, 0))), y0, neg(y1), pos(s(0)))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
QDP
                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))
F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))
F(true, y0, neg(y1), neg(0)) → F(greater_int(y0, neg(plus_nat(y1, 0))), y0, neg(y1), pos(s(0)))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1))
F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, y0, neg(x0), neg(x1)) → F(greater_int(y0, neg(plus_nat(x0, x1))), y0, minus_nat(s(0), x0), neg(x1)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(plus_nat(s(x1), y2))), y0, minus_nat(0, x1), neg(y2))
F(true, y0, neg(0), neg(y2)) → F(greater_int(y0, neg(plus_nat(0, y2))), y0, pos(s(0)), neg(y2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
QDP
                                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))
F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(plus_nat(s(x1), y2))), y0, minus_nat(0, x1), neg(y2))
F(true, y0, neg(0), neg(y2)) → F(greater_int(y0, neg(plus_nat(0, y2))), y0, pos(s(0)), neg(y2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))
F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(plus_nat(s(x1), y2))), y0, minus_nat(0, x1), neg(y2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
QDP
                                                                                                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))
F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(plus_nat(s(x1), y2))), y0, minus_nat(0, x1), neg(y2))

The TRS R consists of the following rules:

plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(plus_nat(s(x1), y2))), y0, minus_nat(0, x1), neg(y2)) at position [0,1,0] we obtained the following new rules [LPAR04]:

F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(x1, y2)))), y0, minus_nat(0, x1), neg(y2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
QDP
                                                                                                                            ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1))
F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(x1, y2)))), y0, minus_nat(0, x1), neg(y2))

The TRS R consists of the following rules:

plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, y0, neg(y1), neg(s(x1))) → F(greater_int(y0, neg(plus_nat(y1, s(x1)))), y0, neg(y1), minus_nat(0, x1)) at position [3] we obtained the following new rules [LPAR04]:

F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(y1), neg(s(0))) → F(greater_int(y0, neg(plus_nat(y1, s(0)))), y0, neg(y1), pos(0))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
QDP
                                                                                                                                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(x1, y2)))), y0, minus_nat(0, x1), neg(y2))
F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(y1), neg(s(0))) → F(greater_int(y0, neg(plus_nat(y1, s(0)))), y0, neg(y1), pos(0))

The TRS R consists of the following rules:

plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
QDP
                                                                                                                                    ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(x1, y2)))), y0, minus_nat(0, x1), neg(y2))
F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))

The TRS R consists of the following rules:

plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule F(true, y0, neg(s(x1)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(x1, y2)))), y0, minus_nat(0, x1), neg(y2)) at position [2] we obtained the following new rules [LPAR04]:

F(true, y0, neg(s(0)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(0, y2)))), y0, pos(0), neg(y2))
F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(s(x0), y2)))), y0, neg(s(x0)), neg(y2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Narrowing
QDP
                                                                                                                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(s(0)), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(0, y2)))), y0, pos(0), neg(y2))
F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(s(x0), y2)))), y0, neg(s(x0)), neg(y2))

The TRS R consists of the following rules:

plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Narrowing
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ DependencyGraphProof
QDP
                                                                                                                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(s(x0), y2)))), y0, neg(s(x0)), neg(y2))

The TRS R consists of the following rules:

plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
plus_nat(0, x) → x

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Narrowing
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ UsableRulesProof
QDP
                                                                                                                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(s(x0), y2)))), y0, neg(s(x0)), neg(y2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Narrowing
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ UsableRulesProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ QReductionProof
QDP
                                                                                                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(s(x0), y2)))), y0, neg(s(x0)), neg(y2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(plus_nat(s(x0), y2)))), y0, neg(s(x0)), neg(y2)) at position [0,1,0,0] we obtained the following new rules [LPAR04]:

F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(s(plus_nat(x0, y2))))), y0, neg(s(x0)), neg(y2))



↳ ITRS
  ↳ ITRStoQTRSProof
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Rewriting
                                                  ↳ QDP
                                                    ↳ Rewriting
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Narrowing
                                                              ↳ QDP
                                                                ↳ DependencyGraphProof
                                                                  ↳ AND
                                                                    ↳ QDP
                                                                    ↳ QDP
                                                                      ↳ UsableRulesProof
                                                                        ↳ QDP
                                                                          ↳ Rewriting
                                                                            ↳ QDP
                                                                              ↳ UsableRulesProof
                                                                                ↳ QDP
                                                                                  ↳ Rewriting
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ AND
                                                                                          ↳ QDP
                                                                                          ↳ QDP
                                                                                            ↳ UsableRulesProof
                                                                                              ↳ QDP
                                                                                                ↳ QReductionProof
                                                                                                  ↳ QDP
                                                                                                    ↳ Narrowing
                                                                                                      ↳ QDP
                                                                                                        ↳ DependencyGraphProof
                                                                                                          ↳ QDP
                                                                                                            ↳ Narrowing
                                                                                                              ↳ QDP
                                                                                                                ↳ DependencyGraphProof
                                                                                                                  ↳ QDP
                                                                                                                    ↳ UsableRulesProof
                                                                                                                      ↳ QDP
                                                                                                                        ↳ Rewriting
                                                                                                                          ↳ QDP
                                                                                                                            ↳ Narrowing
                                                                                                                              ↳ QDP
                                                                                                                                ↳ DependencyGraphProof
                                                                                                                                  ↳ QDP
                                                                                                                                    ↳ Narrowing
                                                                                                                                      ↳ QDP
                                                                                                                                        ↳ DependencyGraphProof
                                                                                                                                          ↳ QDP
                                                                                                                                            ↳ UsableRulesProof
                                                                                                                                              ↳ QDP
                                                                                                                                                ↳ QReductionProof
                                                                                                                                                  ↳ QDP
                                                                                                                                                    ↳ Rewriting
QDP

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, neg(y1), neg(s(s(x0)))) → F(greater_int(y0, neg(plus_nat(y1, s(s(x0))))), y0, neg(y1), neg(s(x0)))
F(true, y0, neg(s(s(x0))), neg(y2)) → F(greater_int(y0, neg(s(s(plus_nat(x0, y2))))), y0, neg(s(x0)), neg(y2))

The TRS R consists of the following rules:

plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
greater_int(pos(0), neg(0)) → false
greater_int(neg(0), neg(0)) → false
greater_int(pos(0), neg(s(y))) → true
greater_int(neg(0), neg(s(y))) → true
greater_int(pos(s(x)), neg(0)) → true
greater_int(neg(s(x)), neg(0)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))

The set Q consists of the following terms:

greater_int(pos(0), pos(0))
greater_int(pos(0), neg(0))
greater_int(neg(0), pos(0))
greater_int(neg(0), neg(0))
greater_int(pos(0), pos(s(x0)))
greater_int(neg(0), pos(s(x0)))
greater_int(pos(0), neg(s(x0)))
greater_int(neg(0), neg(s(x0)))
greater_int(pos(s(x0)), pos(0))
greater_int(neg(s(x0)), pos(0))
greater_int(pos(s(x0)), neg(0))
greater_int(neg(s(x0)), neg(0))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
plus_nat(0, x0)
plus_nat(s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.